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a b s t r a c t

As part of the Department of Energy’s Advanced Technology Development Program, lithium-ion cells of
various sizes and chemistries are aged with periodic reference performance tests to ascertain degradation
rates. The reference tests include a very slow discharge and charge based on a constant current equal to
1/25th of the rated capacity to elucidate the true electrochemical capacity of the cell. A differential analysis
of these data helps to identify the individual kinetic and thermodynamic contributions of the anode
and cathode. However, differential curves are very noisy, and previous smoothing methods included
simple data reduction and moving averages. This paper introduces an alternative method of finding the
differential voltage and differential capacity curves based on radial basis functions. The voltage profile
is fit with a number of Gaussian curves, and the resulting model is differentiated. This approach also
has the added advantage of assessing model uncertainty based on a bootstrap analysis. The radial basis
function method was successfully applied to various lithium-ion chemistries tested under the Advanced
Technology Development Program. The resulting differential capacity and differential voltage curves

are generally smoother than the corresponding curves found by previous methods and also show little
variance, indicating a good model fit. These results imply that the radial basis function technique is a

sing
more robust tool for asses

Nomenclature

ATD advanced technology development
ˇ Gaussian width
BOL beginning of life
Ck center locations/sampling interval
dQ/dV differential capacity
dV/dQ differential voltage
N number of centers
NCA nickel–cobalt–aluminum

NMC nickel–manganese–cobalt
QBOL beginning-of-life capacity
RBF radial basis function
SOC state-of-charge
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1. Introduction

The use of advanced battery technologies is increasing as
the United States seeks to reduce its dependence on foreign
oil and find alternative energy resources. The automotive indus-
try, for example, has been investigating lithium-ion chemistries
for hybrid-electric and plug-in hybrid-electric vehicle applica-
tions. Consequently, the U.S. Department of Energy initiated the
Advanced Technology Development (ATD) Program to address
the barriers that are limiting the successful commercialization of
lithium-ion batteries for vehicular use [1]. These barriers include
accurate prognostic methods, abuse tolerance, cost, and low tem-
perature performance [2].

As part of the ATD Program, prototype lithium-ion cells of
various chemistries and configurations are aged using both stan-
dardized and exploratory methods, followed by a destructive
diagnostic assessment to elucidate degradation mechanisms [1,2].
Cell chemistries for the second and third generation of ATD
cells (i.e., Gen2 and Gen3 cells) are shown in Tables 1 and 2,

respectively. The Gen2 cell chemistry consisted of a baseline
nickel–cobalt–aluminum (NCA) mixture, and a variant chemistry
(Variant C) with a positive electrode that contained an increased
aluminum dopant and corresponding drop in cobalt. The cells were
cylindrical, 18650-size (i.e., 18 mm diameter and 65 mm length)

http://www.sciencedirect.com/science/journal/03787753
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Table 1
Gen2 cell chemistry and ratings.

Gen 2 cells (18650)

Baseline Variant C

Positive electrode

8 wt% PVDF binder 8 wt% PVDF binder
4 wt% SFG-6 graphite 4 wt% SFG-6 graphite
4 wt% carbon black 4 wt% carbon black
84 wt% LiNi0.8Co0.15Al0.05O2 84 wt% LiNi0.8Co0.1Al0.1O2

Negative electrode
8 wt% PVDF binder 8 wt% PVDF binder
92 wt% MAG-10 graphite 92 wt% MAG-10 graphite

Electrolyte 1.2 M LiPF6 in EC:EMC (3:7 wt%) 1.2 M LiPF6 in EC:EMC (3:7 wt%)
Separator 25 �m thick PE (Celgard) 25 �m thick PE (Celgard)
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Rated capacity 1 Ah
Electrode area 846.3 cm2

Maximum voltage 4.1 V
Minimum voltage 3.0 V

ith a voltage rage of 4.1–3.0 V. The beginning of life (BOL) rated
apacities for the Baseline and Variant C cells were 1.0 and 0.8 Ah,
espectively (at the 1-h rate). The Gen3 cells consisted of a baseline
ickel–manganese–cobalt (NMC) mixture, and a variant chemistry
Variant A) that included 2% LiBF2C2O4 as an electrolyte additive.
hese cells consisted of a prismatic design (35 mm width by 62 mm
ength) with a 400 mAh rated capacity and an 18650-configuration

ith a rated capacity of 800 mAh. The Gen3 voltage range was
etween 4.0 and 3.0 V.

Both the Gen2 and Gen3 cells were aged using standardized
ycle-life or calendar-life profiles. Cycle-life testing consisted of
ontinuous pulsing centered on a fixed state-of-charge (SOC) and
est temperature. Calendar-life testing consisted of a voltage clamp
t a fixed SOC and temperature [1–4]. Life testing was interrupted
very four weeks for reference performance tests to gauge battery
egradation in capacity, impedance, energy, and power at a given
emperature (e.g. 25 ◦C). As part of the reference performance test,

ost cells were subjected to a C1/25 test, consisting of a full dis-
harge and charge using a constant current corresponding to 1/25th
f the rated capacity. For example, a Gen2 Baseline cell with a rated
apacity of 1 Ah required a C1/25 discharge and charge constant
urrent of 40 mA. Data were typically recorded every 30 s during
his test to successfully capture the voltage behavior as a function
f state-of-charge. The purpose of this test was to get a sense of
he true electrochemical capacity of the cell as it degraded due to

alendar- or cycle-life aging under pseudo-equilibrium conditions
2]. Additionally, the C1/25 data were used to assess differential
apacity or differential voltage. The advantage of differential anal-
sis is the ability to isolate thermodynamic and kinetic information
rom the individual electrodes within a full cell where no reference

able 2
en3 cell chemistry and ratings.

Gen 3 cells (Variant A)

Prismatic

Positive electrode
8 wt% PVDF binder
8 wt% Super P carbon black
84 wt% Li1.05(Ni1/3Co1/3Mn1/3)0.95O2

Negative electrode
8 wt% PVDF binder
92 wt% (MCMB) 10–28

Electrolyte
1.2 M LiPF6 in EC:EMC (3:7 wt%)
2% LiBF2C2O4 additive

Separator 25 �m thick PE
Rated capacity 0.4 Ah
Electrode area 377 cm2

Max voltage 4.0 V
Min voltage 3.0 V
0.8 Ah
846.3 cm2

4.1 V
3.0 V

electrode is present. Bloom et al. [5–8] used differential analysis to
elucidate the primary source of capacity loss during aging for the
Gen2 and Gen3 cells. Electrode materials from both fresh and aged
cells were harvested and placed in half cells with a lithium–metal
counter electrode to determine the degradation of both the cath-
ode and anode [9,10]. These data were then used to isolate peak
contributions of the individual electrodes within a full cell, and the
subsequent peak shifts during aging were useful in identifying the
source of capacity fade. It was determined that most of the capacity
loss for the Gen2 and Gen3 cells was due to side reactions at the
anode [5–8].

2. Experimental

2.1. Differential analysis

Fig. 1a shows the C1/25 discharge curves measured at 25 ◦C for
representative Gen2 and Gen3 cells at BOL. The representative Gen2
Baseline and Variant C cells showed very similar electrochemi-
cal capacities (1.07 and 1.03 Ah, respectively) though their rated
capacities at the 1-h rate were 20% different. The Gen3 Variant A
prismatic cell showed 0.47 Ah of available capacity, and the corre-
sponding 18650-size cell yielded 0.79 Ah. Fig. 1b shows the C1/25
charge curves for the same representative cells at BOL. The charge
capacities differ slightly from the discharge values due to the volt-

age recovery during the 1-h rest at open-circuit prior to the charge
(i.e., note that the starting charge voltage for each cell is higher
than 3.0 V). Each of these curves monotonically increases in accu-
mulated capacity as the voltage changes and show a sharp “knee”
near full discharge.

18650

8 wt% PVDF binder
8 wt% Super P carbon black
84 wt% Li1.05(Ni1/3Co1/3Mn1/3)0.95O2

8 wt% PVDF binder
92 wt% (MCMB) 10–28

1.2 M LiPF6 in EC:EMC (3:7 wt%)
2% LiBF2C2O4 additive

25 �m thick PE
0.8 Ah
486 cm2

4.0 V
3.0 V
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Fig. 1. (a) C1/25 discharge curves for representative Gen2 and Gen3 cells. (b) C1/25 charge curves for representative Gen2 and Gen3 cells.

Fig. 2. Differential capacity discharge and charge curves at BOL for a representative Gen2 Baseline cell.
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Fig. 3. Differential voltage discharge and charge

Differential capacity is defined in Eq. (1) as the relative change
n capacity (�Q) over the corresponding voltage range (�V), scaled
y the average BOL C1/25 capacity (i.e., QBOL). Differential voltage is
efined in Eq. (2) as the inverse of differential capacity. The peaks
f the differential capacity curves (dQ/dV) represent phase equi-
ibria, and the peaks from differential voltage (dV/dQ) represent
hase transitions [5]. Figs. 2 and 3 show the resulting dQ/dV and
V/dQ curves, respectively, based on a simple two-point numer-
cal differentiation for both the charge and discharge profiles of

representative Gen2 Baseline cell at BOL. Since measurements
ere typically collected at 30-s intervals, this approach yielded very
oisy data. Additionally, differential capacity analysis can become
roblematic within some voltage regions when �V becomes very
mall for a corresponding change in capacity (�Q), resulting in a
ear-infinite solution. Consequently, Bloom et al. [5–8] focused on
n analysis of differential voltage curves since �Q is never zero
ue to the constant current input. Another advantage of differen-
ial voltage is that the individual contributions of the cathode and
node can be combined linearly since the total cell voltage is simply
he difference between the cathode and anode voltages [5].

dQ

dV
= 1

QBOL

�Q

�V
= 1

QBOL

(
Qt − Qt−1

Vt − Vt−1

)
(1)

dV

dQ
= QBOL

�V

�Q
= QBOL

(
Vt − Vt−1

Qt − Qt−1

)
(2)

bviously, the C1/25 data must first be smoothed prior to isolat-
ng peak locations and correlating them with electrode behavior.
arious methods have been introduced, including a simple five-
oint moving average [5], or data reduction prior to taking the
erivative (i.e., using the capacity measured every ninth minute
nd the average voltage in that 9-min interval, followed by a
hree-point numerical differentiation) [2]. Figs. 4 and 5 show the
moothed differential capacity and voltage curves, respectively, for
he same representative Gen2 Baseline cell at BOL based on the data
eduction method. The curves are significantly smoother and the

eak locations are more clearly defined. However, these smooth-

ng techniques are not very robust, and could be improved with a
tatistically based modeling approach. This paper presents an alter-
ative method of calculating differential capacity and differential
oltage using radial basis functions.
s at BOL for a representative Gen2 Baseline cell.

2.2. Radial basis function analysis

In the absence of a physical model for the C1/25 discharge and
charge curve (i.e., Fig. 1), an approach that combines parametric,
black-box models with model order selection and bootstrapping
was implemented using a Gaussian radial basis function (RBF) [11].
The objective was to estimate dQ/dV and dV/dQ curves from current
and voltage measurements as a function of time. Using differential
voltage as an example, the dV/dQ ratio can be split as shown in Eq.
(3). Since the capacity, Q, is in units of amp-hours (Ah), the ratio of
dQ/dt is simply the average constant current, Ī, applied during the
C1/25 test. Consequently, the radial basis function only needs to be
fit to the voltage data.

dV

dQ
= dV /dt

dQ /dt
= dV /dt

d(It)/dt
= dV /dt

Ī
(3)

To approximate dV/dt, the measured voltage as a function of time
[i.e., v(t)], can be first expressed by Eq. (4), where v0 and w are
detrending parameters, and the summation function is composed
of kernels, �, that are evenly spaced by a sampling interval Ck, that
is derived from the total number of centers, N. The argument of �
is called a radial basis function since it depends only on the radius
from the independent variable, t, to the center of each function, Ck
[11]. This model is applied to the observed voltage data to deter-
mine the fitting parameters of v0, w, and ak using least-squares
estimation techniques. The resulting parameter estimates are then
used in the derivative expression to approximate dV/dt.

v(t) = v0 + wt +
N∑

k=1

ak�(t − Ck) (4)

The kernel � can be expressed as the Gaussian function shown in
Eq. (5), where ˇ controls the width of the curve. The derivative of
�(x) is shown in Eq. (6).
�(x) = e−x2/ˇ (5)

d

dx
�(x) = −2x

ˇ
e−x2/ˇ = −2x

ˇ
�(x) (6)
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Fig. 4. Smoothed differential capacity discharge and charge curves at BOL for a representative Gen2 Baseline cell.
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Fig. 5. Smoothed differential voltage discharge and ch

herefore, the derivative of v(t) in Eq. (4) can be written as shown
n Eq. (7).

d

dt
v(t) = w + d

dt

N∑
k=1

ak�(t − Ck) = w +
N∑

k=1

ak
d

dt
�(t − Ck) (7)

ubstituting the derivative of �(x) yields Eq. (8). This derivative
as an interesting form since it may also be written as shown in
q. (9), where the first summation in the expression is simply the
adial basis function portion of v(t). An interesting observation is
hat the Gaussian kernel, �(x), achieves local support and is also an
igenfunction of the derivative.

d
v(t) = w +

N∑
ak

−2(t − Ck)
�(t − Ck) (8)
dt
k=1

ˇ

d

dt
v(t) = w + −2t

ˇ

N∑
k=1

ak�(t − Ck) + 2
ˇ

N∑
k=1

Ckak�(t − Ck) (9)
curves at BOL for a representative Gen2 Baseline cell.

Therefore, an estimate of the differential voltage curve can be
described by combining Eqs. (3) and (9), as shown in Eq. (10).

dV

dQ
= (d/dt)v(t)

(dq(t)/dt)
=

w + (−2t/ˇ)
∑N

k=1
ak�(t − Ck) + (2/ˇ)

∑N

k=1
Ckak�(t − Ck)

Ī
(10)

The model structure, i.e., the values for the Gaussian width (ˇ),
number of centers (N), and center locations (Ck), can be used to
adjust the tradeoff between capturing detail and reducing noise
sensitivity when approximating v(t) in Eq. (4). In system identifi-
cation, this tradeoff is known as model order selection, and several
criteria are available [e.g., 12,13]. These criteria typically involve
comparing the number of parameters (i.e., centers in this case)
with the approximation error. The approximation error goes to zero
as the number of free parameters approaches the number of data
points. Fig. 6 shows a residual norm (|e|2) curve for the represen-

tative Gen2 and Gen3 cells at BOL over a range of 10–60 centers.
Generally, a low number of centers results in underfitting (i.e., loss
of curve detail), and a high number of centers causes overfitting (i.e.,
too much noise included in the fit) [11]. From Fig. 6, it is evident that
the Gen2 Baseline cells have less noise than the other chemistries,
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sis function at various parameter values.
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Table 3
Error between voltage dataset and model fit (in mV).

Error Gen2 cells Gen3 cells

Baseline Variant C Prismatic 18650

Discharge (mV)
Average 3.67E−10 −1.13E−12 1.63E−13 6.76E−13
St. Dev. 0.247 0.280 0.177 0.414
Maximum 3.519 1.101 1.969 1.864
Minimum −1.711 −1.346 −0.723 −1.419

Charge (mV)
Average 1.97E−09 2.64E−12 −1.14E−12 −1.25E−12
Fig. 6. Residual norm for radial ba

nd the remaining representative cells seem to stabilize around
= 40 centers (however, the error will eventually drop to zero as N

ontinues to increase since the noise would also be included in the
t). Consequently, N = 40 centers appears to be a good choice for
oth the Gen2 and Gen3 differential analysis. The center locations
Ck) are evenly spaced in N increments over a range that extends
lightly beyond the total length of the voltage dataset (i.e., the volt-
ge data points at the extremes are not unequally weighted by the
aussian radial basis fit). Finally, the value of the Gaussian width

ˇ) must be chosen such that the analysis does not yield a matrix
alculation resulting in singular values. Otherwise, the resulting
odel fit is not overly sensitive to ˇ, but it should be chosen such

hat it accounts for differences in sampling rates. A width value of
0,000 was chosen for the Gen2 and Gen3 cells in this analysis.

Parameter estimation using radial basis functions is a linear
east-squares problem with a global, unique solution. Thus, the
ntire voltage dataset can be used to determine the differential
urve, as opposed to the previous methods of simply throwing data
way and/or smoothing based on moving averages. Additionally,
he RBF model is tolerant of missing data points, so the bootstrap
echnique [14] can be used to estimate the uncertainty in dQ/dV
nd dV/dQ for a given model structure. The bootstrap is essen-
ially a numerical equivalent of repeated experiments. The original
ata set is randomly re-sampled, with replacement, into a synthetic
ata set. Each original data point may occur once, twice, multiple
imes, or not all in the re-sampled dataset. This re-sampling proce-
ure incorporates the underlying stochastic properties of the noise,
hich are not well known. Model parameters are then computed

or the re-sampled data set to create an ensemble of “bootstrapped”
Q/dV and dV/dQ estimates, which can be summarized by calculat-
ng the sample variance. This uncertainty assessment is a distinct
dvantage of the RBF method since the error variance can not be
ssessed using the original data reduction or smoothing techniques.

. Results and discussion

.1. Voltage model fit

The error between the original voltage data and the model fit
or the representative Gen2 and Gen3 cells at BOL is summarized in

able 3. All four fits show an error with zero mean and a standard
eviation less than ±0.5 mV. The maximum difference observed
as less than +4 mV for the discharge curve and −10 mV for the

harge curve. Given a voltage range between ∼4 V and 3 V, the
esulting maximum error was less than 0.25%. Therefore, these
St. Dev. 0.328 0.317 0.280 0.403
Maximum 2.020 2.830 1.616 1.759
Minimum −4.493 −9.986 −1.563 −2.794

data demonstrate that the RBF fit is able to successfully capture
the voltage behavior.

3.2. Differential Analysis—Gen2 cells

Fig. 7a shows the differential capacity curve for the representa-
tive Gen2 Baseline cell at BOL based on the RBF model compared to
the original data reduction method (see Fig. 4). Fig. 7b shows the
corresponding differential voltage curves. Both methods appear to
yield similar results, with peaks at roughly the same voltage loca-
tions, but there are also some subtle differences. From the dQ/dV
curve (Fig. 7a), the RBF method yields a much sharper initial charge
peak near 3.4 V with an amplitude of ∼2.5 V−1, followed by another
“bump” with an amplitude of ∼1.5 V−1. The same behavior can be
observed in the dV/dQ charge curve (Fig. 7b) near 1.2 mAh/cm2.
These features had been washed out with the original data reduc-
tion approach. Additionally, the RBF method appears to better
preserve detail at the extremes. The high voltage peaks for both
the discharge and charge curve (e.g., near 4.1 V on the dQ/dV curve
or near 0.01 mAh cm−2 on the dV/dQ curve) seem better defined.
However, the associated variances of these additional peaks are
also relatively large (see below), which should be taken into consid-
eration when isolating the contributions of individual electrodes.
Similar results were also observed for the representative Gen2 Vari-
ant C cell (not shown in this paper).
The added advantage of the RBF fit is the ability to assess model
variance. Fig. 8a and b show the bootstrap variance of the dQ/dV
and dV/dQ curves, respectively, for the same Gen2 Baseline cell
at BOL. The variance at the extremes is higher due to the inher-
ent nature of the randomized sampling method. The parameter
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Fig. 7. (a) Comparison of dQ/dV analysis methods (RBF vs. data reduction) for a Gen2 Base
for a Gen2 Baseline cell at BOL.

Table 4
Average bootstrap variance of the representative Gen2 cells.

Baseline cell Variant C cell

dQ/dV dV/dQ dQ/dV dV/dQ

e
a
i
a
(
t
s

r
m
v
a

corresponding Gen2 cells, making it more difficult to identify peak
Discharge 4.12 mV−1 1.69 �V 3.61 mV−1 0.23 �V
Charge 6.63 mV−1 2.15 �V 5.06 mV−1 0.61 �V

stimates will essentially stay the same if the excluded data have
djacent points that are similar and included in the sample set (i.e.,
n the mid-voltage region). However, the voltage behavior shows
sharp “knee” near full discharge and an “uptick” near full charge

see Fig. 1). When data points at these locations are excluded in
he randomized sample, the subsequent parameter estimates will
how much more variability.

A summary of the average bootstrap variances for both the

epresentative Gen2 Baseline and Variant C cells at BOL are sum-
arized in Table 4. The differential capacity curves have an average

ariance less than ±7 mV−1, and the differential voltage curves have
verage variances less than ±2.5 �V, indicating a very good model
line cell at BOL. (b) Comparison of dV/dQ analysis methods (RBF vs. data reduction)

fit. Interestingly, the dQ/dV variance (Fig. 8a) also shows a sharp
peak for the charge curve near 3.4 V, corresponding to the loca-
tion of the initial charge peak in Fig. 7a. This indicates that higher
noise content is present, making it more difficult to resolve the
peak. However, the maximum variance at this voltage is only ∼3.5%
(approximately 85 mV−1 variance for a peak height of 2.5 V−1), indi-
cating that the RBF fit is still very good at this point. Likewise,
the noise content of the dV/dQ curve also starts increasing near
1.2 mAh cm−2.

3.3. Differential analysis—Gen3 cells

The dQ/dV curve for the representative 18650-size Gen3 Vari-
ant A cell at BOL is shown Fig. 9. Using the original data reduction
technique, the differential curves are significantly noisier than the
locations. The only way to get a smoother curve would be to elim-
inate even more data at the expense of preserving subtle curve
characteristics. Using the RBF approach with the same Gaussian
width (ˇ = 10,000) and number of centers (N = 40), however, the fit
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Fig. 8. (a) Bootstrap variance analysis for the dQ/dV curve of a Gen2 Baseline cell at BOL. (b) Bootstrap variance analysis for the dV/dQ curve of a Gen2 Baseline cell at BOL.

Fig. 9. Comparison of dQ/dV analysis methods (RBF vs. data reduction) for a Gen3 Variant A 18650 cell at BOL.
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Fig. 10. Bootstrap variance analysis for the dQ/dV

Table 5
Average bootstrap variance of the representative Gen3 cells.

Prismatic cell 18650 cell

dQ/dV dV/dQ dQ/dV dV/dQ

s
c
v
G
s
1
s
i
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a
a
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a
±
d
i
t

4

m
f
m
a
l
n
s
u

Discharge 3.95 mV−1 0.20 �V 9.36 mV−1 0.35 �V
Charge 6.18 mV−1 0.20 �V 10.85 mV−1 0.39 �V

till yields a very smooth differential signal. Thus, the RBF method
an still successfully resolve peaks while making use of the entire
oltage dataset despite the increased noise content. As with the
en2 Baseline cell, the Gen3 18650-size cell shows an initially
harper charge peak followed by a “bump” near 3.5 V (Fig. 9a) or
.3 mAh cm−2. Similar results were also observed for the repre-
entative Gen3 prismatic cell, though the additional “bump” in the
nitial charge peak was not seen for either the RBF or data reduction

ethod (not shown in this paper).
The corresponding bootstrap error estimation for the same rep-

esentative 18650-size Gen3 Variant A cell is shown in Fig. 10. As
ith the Gen2 cells, the variances at the extremes is higher because

f how the samples were randomly chosen. A summary of the aver-
ge bootstrap variances for both the representative Gen3 prismatic
nd 18650 cells at BOL are summarized in Table 5. The differen-
ial capacity curves have an average variance less than ±11 mV−1,
nd the differential voltage curves have average variances less than
0.5 �V, indicating a very good model fit for these cells as well. The
Q/dV variance (Fig. 10) also show increased noise levels at the var-
ous peak locations, but the maximum variance is less than 1.5% of
he peak amplitude.

. Summary and conclusions

The use of radial basis functions appears to be a very good, robust
ethodology for determining battery differential capacity and dif-

erential voltage. Unlike the original filtering and data reduction
ethods, radial basis functions make use of all the available data
nd allows for an explicit tradeoff between curve detail and noise
evels. The model is not overly sensitive to the Gaussian width or
umber of centers, and once appropriate values have been selected
o as to avoid singular matrices and fitting errors (i.e., overfitting or
nderfitting), respectively, the model can successfully capture the
curve of a Gen3 Variant A 18650 cell at BOL.

voltage response as a function of time. The derivative of the model
can then be used to find a smoothed differential capacity or differ-
ential voltage curve. This approach was applied to representative
lithium-ion cells of different chemistries and sizes and found to
yield smoother results when compared to the original data reduc-
tion methods. Another significant advantage of using radial basis
functions is the ability to evaluate the uncertainty of the fit using
the bootstrap technique. Using 100 randomly sampled datasets, the
fitted differential curves generally showed very little variance, thus
providing confidence that the model is good. Consequently, radial
basis functions should prove useful when identifying and assessing
peaks from differential data to isolate contributions from individual
electrodes.
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